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SUMMARY 

 
 An existing two-dimensional macro-element for reinforced concrete beam-column joints is 
extended to a three-dimensional macro-element. The three-dimensional macro-element for beam-
column joints consists of six rigid interface plates and uniaxial springs for concrete, steel and 
bond-slip, which model the inside of a beam-column joint. The mechanical models for the 
materials and the stiffness equation for the springs are also presented. To validate the model, test 
results from three slab-beam-column subassemblies subjected to bi-lateral cyclic load are used. It 
is revealed that the new joint model is capable to capture the strength of beam-column joints and 
the bi-directional interaction in joint shear response, including the concentration of damage in 
the beam-column joint, the pinching nature in hysteretic behavior, the stiffness degradation and 
strength deterioration resulting from cyclic and bi-directional loading. 
 
Key Words: reinforced concrete; slab-beam-column sub-assemblage; beam-column joint; 
bidirectional lateral load; macro element 
 
 

1. INTRODUCTION 
 
Under earthquake loading, beam-column joints in two-way ductile-moment space frames are 
subjected to bi-directional lateral cyclic loading. To assess a structural system using nonlinear 
response history analysis, a mathematical model is required that is capable of accurately 
simulating the nonlinear cyclic response of beam-column joints subject to bi-directional lateral 
loading interaction. However, no three-dimensional (3D) model of practical nonlinear response 
simulation considering bi-directional interaction has been available for reinforced concrete (RC) 
beam-column joints. As a result, to the best of our knowledge, the impact on beam-column joints 
response when subjected to bidirectional lateral loading has not been reported. 
   Since the late 1990s, two-dimensional (2D) models for RC beam-column joints have been 
developed. These models were due to the necessity of assessing the seismic performance of old 
and existing RC buildings. They usually consist of rigid elements and rotational springs; e.g., [1, 
2, 3, 4 and 5]. However, there is no direct path to extend these 2D models to simulate the bi-
directional response of beam-column joints because of the complexity of such a 3D model and 
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the difficulty of capturing the two-way interaction of stiffness and strength deterioration in a 
beam-column joint. Such models also need the calibration of the backbone curve of a shear 
stress-strain relationship under bidirectional loading by 3D tests. The 3D nonlinear finite element 
analysis of a full structure is not practical because the dynamic non-linear analyses of structural 
systems are computationally extremely demanding, in particular for cyclic bi-directional loading. 
 The authors have been developing a mechanical model that captures the nonlinear behavior 
of RC beam-column joints [6]. Based on the results of the study, the first macro-element for 
beam-column joints was proposed for 2D beam-column joints by Tajiri and Shiohara [7]. 
Kusuhara simplified the model to simulate 2D beam-column joint tests including four interior 
and four exterior joints [8] that exhibited joint hinging behavior. The joint hinging is a type of 
joint failure mechanism recognized recently, theoretically predicted [9], and experimentally 
verified [10] by the authors, in which the beam-column joint reaches maximum strength by the 
tensile yielding of longitudinal bars in both the horizontal and vertical directions within the joint 
shear panel. The joint hinging mechanism is known to exhibit lower strength than predicted by 
the flexural theory of the section and severely pinched hysteretic characteristics. They compared 
the simulation and measured response and obtained a result where the model satisfactorily 
captures the strength and hysteretic behavior of beam-column joints showing the joint hinging 
mechanism as well as beam hinging failure and joint shear failure. Hence, the macro-element 
presented here has an advantage, in that it can simulate the joint hinging mechanism, which is 
neglected by all existing 2D joint models along with the beam hinging and joint shear failure. 
Although the macro-element model requires a moderate amount of computational effort, it has a 
great advantage over existing joint models in that it can simulate the extremely realistic behavior 
of a beam-column joint. 
 To date, few experimental data are reported for RC 3D slab-beam-column sub-assemblages, 
including [11, 12, 13 and 14]. One of the test series, which seems to have exhibited a joint 
hinging mechanism, was subjected to an intensive bi-directional lateral loading path, performed 
by Kurose et al. at the University of Texas. They tested three slab-beam-column sub-assemblages 
statically loaded under uniaxial or bidirectional lateral loading to failure [12]. They reported that 
the longitudinal bars in the beams and the joint hoops yielded during the early load cycles and 
that the longitudinal bars in the column also yielded in later load cycles. Large deformation was 
measured in the beam-column joints. It is also reported that specimens under bidirectional lateral 
loading exhibited strength loss more rapidly than specimens subjected to unidirectional loading. 
Considering bi-directional interaction in a beam-column joint is necessary to simulate such 
behavior. 
 In this paper, first, the 2D macro-element for beam-column joints is extended to 3D macro-
elements. Then, the tests by Kurose et al. are used to validate the 3D macro-element proposed 
here. The beam-column joints of the slab-beam-column sub-assemblages are modeled with the 
3D macro-element, and the correlation of simulation and test results are examined. 
 
 

2. MATHEMATICAL FORMULATION OF A 3D BEAM-COLUMN JOINT 
 
2.1 Overview  
 The macro-element presented herein was developed for RC beam-column joints in a space 
frame that joins horizontal beams in two orthogonal directions with vertical columns. The term of 
macro-element is used here to refer to structural elements consisting of assemblage of 1D 
decoupled springs with force-displacement relationships rather than stress-strain relationships. 
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The boundary of the beam-column joint is modeled as six separate rigid plates at the center of 
which are given nodal degrees of freedom (DOFs) for three translational and three rotational 
DOFs. As a result, the macro-element has 36 external DOFs in total. The six nodes are shared 
with adjacent beams and columns constituting a beam-column joint sub-assemblage. The 
concrete uniaxial springs in the beam-column joint are placed uniformly in 9 directions in 3D 
space, the cross-sectional area for which was chosen to be the same as the tributary area 
perpendicular to each direction. The steel uniaxial springs are placed in the horizontal or vertical 
direction at the same location of the actual reinforcing bars including transverse reinforcement in 
the joint. The properties of the concrete and steel springs are determined based on the uniaxial 
non-linear mechanical properties of the materials. The bond slip springs consider the interaction 
of longitudinal reinforcement and the surrounding concrete. 
 In the 3D joint macro-element, joint shear is resisted by the truss action of inclined concrete 
springs in compression and the reinforcing steel springs in tension, whereas the moments from 
adjacent beams and columns also need to be transferred by the diagonal compression in the 
springs and steel springs in tension. The axial load in the upper and the lower column was mainly 
transferred by the vertical concrete and steel springs. Moments under gravity load on the opposite 
beam ends are balanced at the joint by compression in the horizontal concrete springs and tension 
in the horizontal steel springs. Consequently, the macro-element reflects the general interaction 
of axial force, joint shear and moment transfer in the beam-column joints subjected to lateral 
force, as well as the gravity load transferred from the beams to the column. 
 

 
 

Fig. 1 – Macro-element of a 3D beam-column joint 
 
 

  
(a) 3-D beam-column joints 

(b) DOF-representing node of 3D joint element and global coordinate system 

Figure 1. Three dimensional beam-column joint 
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2.2 Location and connectivity of the elements  
 The geometry of a macro-element is defined by the following dimensions: depth of the 
column, !D ; width of the column,B ; and height of the beam, H ; as depicted in Fig. 1 (a). It is 
not necessary for all six rigid plates to be connected to adjacent members as shown in Fig. 1 (a). 
Fig. 1(b) shows the location of the external DOFs. The deformation in space is defined by the 
displacement of six rigid plates. In a frame analysis, the end of a line member and a beam-column 
joint plate share a single 6 DOF node.  
 The concrete springs are placed along the six diagonal directions and in three orthogonal 
directions, connecting the rigid boundary plates at both ends as shown in Fig. 2. In the linearly 
elastic range of concrete, this multi-directional concrete spring causes an overestimation of the 
stiffness of concrete. However, considering the nonlinear property of concrete subject to tensile-
compression strain fields after cracking, only the selective springs in the direction of principal 
axial strain can resist the compression. Therefore, it is not necessarily overestimating the stiffness 
of cracked concrete. The steel springs are placed in three directions, connecting a rigid plate and 
an internal node with one DOF in the spring direction, which is connected to the rigid plates in its 
vicinity with dimensionless bond-slip springs.  
 

 
Fig. 2 – Nine directions of concrete springs and their tributary areas 

 
2.3 Concrete springs  
 Concrete in a beam-column joint is sliced like a fiber model. A single layer of the concrete 
consists of two diagonals and the orthogonal springs shown in Fig. 3. Each of the concrete 
springs is modeled as uniaxial concrete bars. The length, Ln , is the distance between the two ends, 

Figure 2.  Nine directions of concrete spsrings and tributary area   
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and the cross sectional area An  is An = dnw , where dn  is the tributary width of the concrete 
spring, and w  is the thickness of a single concrete layer. The section area An  of the orthogonal 
concrete springs are Hw N  and Dw N , where N  is the number of the division, as shown in Fig. 
3 (b), and Fig. 3 (c).   
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                                    (a) Diagonal spring     (b) Horizontal spring     (c) Vertical spring 

 
Fig. 3 – Properties of concrete springs 

 
2.4 Reinforcing steel springs  
 The steel springs consider the sectional area of the reinforcing bars. The steel spring length 
is modified to consider the effect of the slip out of longitudinal bars from beams or columns. The 
pull-out of reinforcing bars from beams or columns into the beam-column joint interface causes 
under estimation of the chord rotation compared to that estimated by the integration of the 
theoretical moment-curvature relation of the section. To adjust this effect, the length of a 
reinforcement spring Ln in the joint macro-element is modified as Ln = Le + ls , where Le  is the 
actual distance between the two ends of the steel spring, and ls  is the additional length 
contributing to the counting for pull-out deformation, taken as half of the maximum distance 
between the top and bottom rebar of the beam or column. The effective pull-out length ls  is 
added to consider the difference of the total tensile elongation of the tensile steel calculated from 
flexural theory and the assumed distribution considering the tension shift of tensile steel strain 
due to the shear resisting mechanism as shown in Fig. 4(a).  
 
2.5 Bond-slip springs 
 Bond-slip along beam and column longitudinal reinforcing bars is explicitly modeled by 
bond springs that connect the inner node at the midpoint of the reinforcing bar to an adjacent 
rigid plate as shown in Fig. 4(b). For the corner column, longitudinal bars, two bond springs are 
placed onto two neighboring orthogonal rigid plates because the force is transferred via bond 
from those bars. Bond force is defined as τ As , where τ  is the bond stress, and As  is the surface 
area of the longitudinal reinforcement, which does not include the contribution of ls , the 
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effective length for longitudinal bars. Uniaxial springs representing slab bars within effective slab 
width and transverse reinforcements in a beam-column joint are simplified as one steel spring 
placed at the mid-height of the macro-element with no bond spring placed between the transverse 
reinforcements and concrete as shown in Fig. 4(c). 
 

 
(a) Effective length of steel element 

 
(b) Longitudinal steel element and bond-slip spring 

 
(c) Transverse steel element and slab steel element 

 
Fig. 4 – Steel and bond-slip springs 

 
2.6 Compatibility equations 
 Compatibility equations define the generalized displacements (displacements and rotations) 
at uniaxial spring ends for given generalized displacements at external DOFs. 

Db

εy

additional elongation

assumed strain distribution 
considering tension shift

linear strain distribution 
used for integration of 
Moment-curvature relation 

Dc

Le =
Dc

2
+
Db

2

bond-slip spring bond-slip spring

beam longitudinal bar passing
through a joint

beam longitudinal bar passing
through a joint

column longitudinal bar passing
through a joint

C

D

E

#$

spring for slab steel

spring for transverse reinforcements

spring for slab steel

effective slab width

slab steel

slab steel



 

 7 

 When one end (1st-end) of a spring is connected to the i-th rigid plate and the other end 
(2nd-end) is connected to the j-th rigid plate, the displacements at the two ends of the spring are 
explicitly defined by the rigid plate constraint imposed at the joint boundaries and the general 
displacements (i.e., displacements and rotations) of nodes i and j. The relationship between the 
nodal displacements of a spring  d12  [6x1] and the displacements of DOF-representing nodes dij  
[12x1] is generally expressed in the global coordinate system as:  
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⎩⎪

⎫
⎬
⎪

⎭⎪
=

R1i
t 0

0 R2 j
t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

d i

d j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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 d12 =R12 ij
t d ij  ( )  

(1) 

 
where,  d1  and  d2  are the three displacements, at constrained nodes 1 and 2 of the spring in the 
global coordinate system;  di  and d j  are the six generalized displacements (like  d1  and  d2 ) at 
the retained nodes i and j in the global coordinate system;  R1i  and R2 j are the constraint matrices 
defined by their relative position between constrained nodes 1 and 2 and retained nodes !i  and!j  
as: 
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where ex1i , ey1i  and ez1i  are the distance from node i to node 1 in the X , Y , and Z -axis 
directions, respectively; and similarly ex2i , ey2i  and ez3i  are the distance from node j  to node 2 
in the X , Y , andZ -axis directions, respectively, as illustrated in Fig. 5. 

 
Fig. 5 – Compatibility 

 
With the coordinate transformation matrix Γ12 [3x3],  d12 , the nodal displacements at the end of 
the spring in the global coordinate system [6x1] are transformed to  ʹd12  in the local coordinate 
system [6x1], the relationship of which is described as follows: 
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 ʹd12 = Γ12
td12  ( )  (3) 

 
where ʹd1  and ʹd2  are the three displacements at the constrained nodes 1 and 2 at the ends of a 
spring in the local coordinate system. Axial deformation of a uniaxial spring element  e12  can be 
expressed as: 

  e12 = −1 0 0 1 0 0⎡⎣ ⎤⎦
ʹd1
ʹd2

⎧
⎨
⎪
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⎫
⎬
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   or:    

 e12 =H
t ʹd 12  ( )  (4)  

 
Combining the above relationships, the relation of 12e , the axial deformation of a spring, and dij , 
the generalized displacements of external joint nodes i and j, is given as follows: 
 

  

 

e12 =H
tΓ tR12 ij

t d i

d j

⎧
⎨
⎪
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⎫
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⎪
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The compatibility matrix, C12ij =R12ijΓ12H( )  [12x1], is used to formulate the stiffness equations 
for the macro-element in the global coordinate system. 
 When one end (1st-end) of a spring is connected to a rigid plate and the other end (2nd-end) 
is connected to an internal node, such as the case of steel springs for longitudinal bars or the bond 
slip springs, the displacement at the one end of the spring is the defined displacement of an 
external node, and the displacement at the other end is of an internal node. Moreover, the axial 
deformation  e  of the springs is derived similarly, using a compatibility matrix C , constraint 
matrix R , coordinate transformation matrix Γ , and an equilibrium matrix H , which are not 
shown here. 
 
2.7 The stiffness equation 
The relationship between the axial deformation of uniaxial springs and the nodal DOF of a 3D 
joint macro-element including the external and internal nodes can be written as follows: 
 
  e =Ctd  (6) 
 
where e  is a vector of axial deformation of the uniaxial springs with a matrix size of [Nm✕1] (Nm 
is the total number of uniaxial springs); C is a full compatibility matrix with the size of [36✕Nm]; 
and d  is a vector of the generalized nodal displacement of the six rigid plates with a matrix size 
of [36✕1]. From the principle of virtual work, the contra-gradient transformation for force is: 
 
  F =Cp  (7) 
 
where F is a vector of the generalized nodal forces (three forces and three moments) for the six 
rigid plates with a matrix size of [36✕1]; and p is a vector of the axial force of the uniaxial 
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springs with a matrix size of [Nm✕1]. The axial force-deformation relationships for all uniaxial 
springs are expressed as: 
 
  p =Kme  (8) 
 
where Km is a diagonal stiffness matrix with the matrix size of [Nm✕Nm], and the n-th diagonal 
element of Km  is the axial stiffness of the n-th uniaxial spring, which is defined as: 
 
  kn = EnAn Ln  (for concrete and steel springs)  (9.1) 
 
  kn = kbond-slip  (for bond slip springs)  (9.2) 
 
where kn is the tangential stiffness of the n-th uniaxial spring; and En , An , Ln and kbond-slip are the 
tangential modulus of the material, the sectional area, the length of the spring, and the stiffness of 
bond-slip relation, respectively. Using the equations (6), (7), and (8) above, a stiffness equation 
for the 3D joint macro-element considering all the DOFs for external nodes and internal nodes 
can be obtained from: 
 
  F =CKmC

td   or   F =Kd ( )  (10) 
 
A stiffness equation for the 3D joint macro-element for the DOFs of the external nodes can be 
obtained by a condensation of the stiffness matrix K  to eliminate the DOFs of the internal nodes 
with an assumption that no external load is acting on the internal nodes within the 3D joint 
macro-element. 
 
  

3.  CONSTITUTIVE MODELS FOR MATERIAL 
 

The constitutive models for the uniaxial stress-deformation relationships of concrete, steel and 
bond-slip are presented here. 
 
3.1 Concrete in compression 
 Figure 6 (a) depicts the stress-strain relationship for concrete. The Kent and Park model 
[15] is adopted for the envelope curve in compression. The descending branch, after the 
compressive strength, is determined considering the length of the concrete spring. The post peak 
concrete crushing is localized to a finite region, and the dissipated work per unit area is a unique 
material parameter called the concrete compressive fracture energy. Therefore, the concrete post-
peak of the concrete stress-strain response needs to be dependent on the length of the concrete 
spring. Hence, each post-peak slope parameter Zm  of the concrete stress-strain relation is 
determined by considering the constant compressive fracture energy criterion. By considering the 
definition of the compressive fracture energy shown in Fig. 6(b), the relation of the length and 
the concrete compressive fracture energy of a concrete spring is given as: 
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where Gfc is the concrete compressive fracture energy, the hatched area shown in Fig. 6 (b); Lm is 
the length of a concrete spring; fc is the compressive strength of concrete in MPa; εc is the strain 
at compressive strength of concrete; and ε0 is the strain of concrete at zero compressive strength. 
The concrete compressive fracture energy is assumed as 8.8 fc in MPa, as was proposed by 
Nakamura et al. [16]. As the strain at compressive strength of concrete ε0  is obtained by solving 
Eq. (11), the normalized post-peak slope Zm  is calculated by Eq. (12): 
 

  Zm =
1

ε0 −εc
 (12) 

 
3.2 Concrete in tension 
 The ascending branch of the concrete stress-strain response is assumed to be linearly elastic 
in tension from zero to the tensile strength, and the softening slope is defined by the tensile 
fracture energy. An idealized tension-softening curve is shown in Fig. 6 (c), and the fracture 
energy Gft  is calculated by Eq. (13) [17]: 
 
  Gft =10 dmax( )1/3 fc1/3  (13) 
 
where dmax  is the maximum size of aggregate in mm, and fc is the compressive strength of 
concrete in MPa.

 

 
 

(a) Stress-strain relationship of concrete 
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(b) Compressive fracture energy            (c) Tension softening curve 

  
Fig. 6 – Constitutive model for concrete 

 
3.3 Steel 
 The envelope curve of the stress-strain relation for reinforcing steel is assumed to be 
bilinear. The slope of the strain hardening branch is assumed to be equal to 0.001Es , where Es  is 
the elastic steel modulus. The hysteretic curves are masing-type with an unloading stiffness of 
Es , where the Bauschinger effect is considered as simplified bilinear lines [7] as depicted in Fig. 
7. 

 
Fig. 7 – Constitutive model for steel 

 
3.4 Bond-slip 
 The envelope curve for the bond stress versus the slip response relation is a multi-linear 
simplification of the model by Eligehausen et al. [18] (Fig. 8). The hysteresis rules by Morita 
[19] are incorporated. The model parameters for the envelope curve are determined as those of 
the Good Bond Conditions of Confined Concrete in CEB-FIP Model Code [20].  
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Fig. 8 – Bond stress versus slip relationship 

 
 

4 MODELING OF LABORATORY SPECIMENS 
 
4.1 Laboratory specimens 
 A test program of three full scale 3D slab-beam-column sub-assemblages was selected to 
validate the proposed 3D joint macro-element [12]. The geometry and the reinforcing details of 
the specimens are shown in Fig. 9. Specimen J1 is a one-way frame with a slab and without 
transverse beams. The column-to-beam strength ratio is approximately 1.2. Specimen J2 is a two-
way moment frame sub-assemblage with two transverse beams framing into the continuous 
column. The column-to-beam strength ratios are approximately 1.4 in both directions. Specimen 
J3 is also a two-way moment resisting frame sub-assemblage with one continuous beam and one 
discontinuous beam framing into a continuous column. The column-to-beam strength ratio is 
approximately 2.0 for the normal direction where one discontinuous beam frames into the joint 
and approximately 1.2 for the transverse direction in which a continuous beam frames into the 
joint. (Note that 600 mm by 130 mm on each side of the beam was considered as the effective 
slab section that contributes to the beam strength to calculate the above ratios.)  
 The story height and the beam span are 165 in. (4,200 mm) and 192 in. (4,880 mm), 
respectively. It is reported [12] that the specimens were designed in accordance with the ACI318-
83 [21] and the recommendation of ACI-ASCE 352 [22]. For all of the specimens, the nominal 
joint shear capacity to demand ratio is approximately 1.0; specifically, it is 0.9, 0.9 and 1.1 for 
the Specimens J1, J2 and J3, respectively. The lateral displacement trajectories for the tests are 
shown in Fig. 10. Specimen J1 was subjected to a unidirectional cyclic lateral displacement 
history, while Specimens J2 and J3 were subjected to bidirectional cyclic displacement histories. 
For all of the test specimens, no axial force was applied to the column. Normal strength concrete 
and normal strength reinforcing steel were used. The mechanical properties of the materials are 
listed in Table 1.  
 

 
 
 
 

ss1s2s3 s4 s5

τ

τ3
τ2

τ1

  �

τ1 = 0.42,  τ2 = 0.87τ3,  τ3 = 2.5 fc ,  τ4 = τ3,  τ5 = τ1,  
s1 = 0.1s3,  s2 = 0.5s3,  s3 =1 ,�s4 = s3 + 2 ,  s5 = s3 +10.5
 τ  and fc   in MPa and s in mm
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Table 1. Mechanical properties of materials by Kurose et al 1988 [12] 
 

(a) Compressive strength of concrete in psi (MPa) 

Position Specimen 
J1 

Specimen 
J2 

Specimen 
J3 

Slab, beam joint 
and lower column 

3500 (24) 3700 (26) 4700 (33) 

Upper column 3520 (24) 3780 (26.5) 3250 (22.5) 
 

(b) Rebar Strength in ksi (MPa) 
Bar Yield point Tensile strength 
#3 80.8 (557) 118.2 (814) 
#4 79.7 (549) 111.9 (771) 
#6 74.2 (511) 108.9 (750) 
#7 65.6 (452) 101.4 (698) 
#8 67.2 (462) 106.0 (730) 
#9 66.6 (458) 106.1 (731) 

 
 

 
Fig. 9 – Geometry and joint reinforcing detail of reference specimens 
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Fig. 10 – Loading histories 

 
 

Fig. 11 – Analytical model of reference specimens 
 
 

 

dr
ift

 a
ng

le
(%

)
dr

ift
 a

ng
le

(%
)

dr
ift

 a
ng

le
(%

)
dr

ift
 a

ng
le

(%
)

dr
ift

 a
ng

le
(%

)
4
2
0

-2
-4

E

W

4
2
0

-2
-4

N

S

E

E

N

N

S

S

W

W

Cycle: , 

Cycle: , 

E

E

N

N
S

S

W

W

Cycle: , 

Cycle:

(b) Specimen J2

(a) Specimen J1

4
2
0

-2
-4

E

W

4
2
0

-2
-4

E

W

4
2
0

-2
-4

N

S
(c) Specimen J3

2440 2440

2440

2440

2440

2100

21002100

PEW

beam-column joint:
proposed 3D macro element

concrete
concrete

longitudinal steel
of column

longitudinal steel
of beam

slab bar
508mm

508mm 508

406mm406mm

508

integration
points (5 ea.)

pin
roller

PNS

dimension in mm

N

n=10

n=10

n=10
n=10

n=10 n=10

n=8
n=2

n=8

n=10

600mm600mm 600mm

2440

2110

PEW

2440

2440

2100

PNS

2440

2110

PEW

column section (J1, J2 & J3) Beam section (J1 & J2) Beam section (J3)

J1 J2 J3

130mm
130mm



 

 15 

4.2 Model parameters 
 The model parameters used for the concrete, steel and bond-slip constitutive models were 
determined from the material and geometry listed in Table 1. To determine the tensile fracture 
energy of concrete in Eq. 13, the maximum diameter of coarse aggregate is assumed to be 25 mm. 
Figure 11 shows analytical representations of those specimens. The 3D joint macro-element 
described in the previous sections was used, and five divisions (i.e., N = 5) were used to define 
the layout of the concrete springs. As the differences in calculated results using five divisions or 
seven divisions were so little, results are shown for the case of five divisions.  
 Columns and beams were modeled using force-based elements with fiber-type cross-
section models. The element resultant forces were computed using five fiber sections distributed 
along the length of the element, and the Gauss-Lobatto quadrature rule was used for the 
numerical integration [23] of the curvature along the element. The fiber sections were defined by 
uniaxial stress-strain relationships representing concrete and steel. The concrete and steel 
constitutive models for the fiber section are the same as in the joint. Thus, no explicit model is 
included for confinement of the concrete model. Additionally, using this formulation, plane 
sections are assumed to remain plane and perpendicular to the centroid axis. Thus, bond-slip 
behavior and shear deformation within the beams and columns are neglected. Finally, an elastic 
torsional response model is assumed for the beams and columns.  
 For all the specimens, the slab is modeled by a simple approach of the T-shape beam 
section. The effective slab width of 24 in (600 mm) was adopted based on the AIJ Standard [24], 
which was used to determine the T-shaped beam section as well as the contribution of the slab 
steel in the effective slab width, as shown in Fig. 4(c). In addition to that, constraints of some 
nodal DOFs of the joint macro element were introduced such that the opposite rigid plate of the 
beam-column joints should always be kept in parallel to consider the effect of in-plane 
constraints provided by the slab as a diaphragm. 
 
4.3 Boundary conditions, loading path and DOF constraints  
 Boundary conditions were introduced into the numerical model to simulate the load pattern 
used in the laboratory tests. In the numerical model, a pin-support was provided at the base of the 
lower column segment, and horizontal rollers were introduced at the beam ends. The 
unidirectional and bidirectional lateral displacement cycles used in the laboratory tests were 
replicated in the simulation by using displacement control to apply lateral loads at the top of the 
column. To avoid a singular stiffness matrix due to the rotation of the whole structure around the 
vertical axis, the rotational displacement around the column axis at the column base was also 
constrained.  
 

5.  COMPARISON OF THE SIMULATED AND MEASURED RESPONSE 
 

An original MATLAB script SICOJ was developed by the authors for the simulation of 3D fish 
bone structures subject to bi-directional lateral loading. The simulation is carried out on an 
ordinary PC. For the comparison, simulations with rigid beam-column joints are added for each 
case, where all the springs for concrete, steel and bond-slip within the joint block are set to be 
infinitely stiff and strong.  
 
5.1 Load-deflection relationship 
 The test results and the simulations are compared in Figures 12 through 14, where the story 
shear vs. story drift relations for E-W and N-S directions are shown for the Specimens J1, J2 and 
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J3, respectively. For all specimens, the conventional rigid joint model was inadequate for 
predicting the strength, stiffness degradation, strength degradation and the observed highly 
pinched hysteretic response. The rigid joint model always overestimates the lateral strength, and 
the type of hysteretic behavior was masing-type, different from the test, where severe pinching 
was observed. Additionally, the rigid-joint model does not simulate the strength degradation due 
to bidirectional cyclic loading, which is observed for case Specimens J2 and J3. It is also noticed 
that the hysteretic loop of Specimen J1 shows an asymmetric curve. The simulations reproduce 
this behavior well, which may be attributed to residual tensile strain in the joint hoops at the last 
peak in the positive directional loading that diminishes the stiffness and strength of the beam-
column joint at the loading path from the positive peak into the negative direction.  
 The models that include the 3D beam-column joint macro-element generally provide 
accurate simulations of the measured, stiffness and strength, hysteretic response, and degradation 
in stiffness and strength, which was observed for the specimens subjected to unidirectional and 
bidirectional lateral loading and for the specimens with and without two continuous beams 
framing into the joint.   
 However, close observation reveals some differences between the simulated and measured 
responses that may be attributed to the simple modeling of the slab as T-sections of a beam with 
fixed dimensions and a constant reinforcement contribution. Generally, the contribution of the 
effective slab to the strength and stiffness increases as the story drift demand increases. [25, 26] 
Therefore, the model could underestimate the strength and energy dissipation at large story drift. 
However, for Specimen J1, the simulation overestimates the peak strength and energy dissipation. 
This is attributed to overestimation of the effective slab width. Specimen J1 is a sub-assemblage 
from a one-way frame with no transverse beams. For this system, the contribution of the slab may 
be diminished. In contrast to this, the data show that the strength, initial stiffness and peak 
strength of Specimens J2 and J3 are accurately simulated for story drift demands of less than 2%. 
However, the strength and energy dissipation at story drift of 4% are significantly 
underestimated. This may be attributed to the true slab effective width increase with increasing 
deformation demand. 
 

 
 

 Fig. 12 – Story shear-story drift relationship of Specimen J1 
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Fig. 13 – Story shear-story drift relationship of Specimen J2 
 

 
 

Fig. 14 – Story shear-story drift relationship of Specimen J3 
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5.3 Failure Mode 
 Researchers at the University of Texas at Austin reported [12] the failure of Specimens J1, 
J2 and J3 as joint shear failure following flexural yielding of the beams. The failure mode by the 
simulation with the macro element is consistent with the test data. In Fig. 12 through Fig. 14, the 
first yielding of joint transverse reinforcement, beam longitudinal reinforcement, and column 
longitudinal reinforcement are marked for both the measured and simulated response histories. In 
the analyses of Specimen J2, the yielding of the beam longitudinal reinforcement occurred at 2% 
story drift, and yielding of the column longitudinal reinforcement occurred at 4% story drift 
under unidirectional loading conditions. Figure 15 shows story shear versus joint shear distortion 
as measured and as simulated for specimen J1. The response simulated using the 3D macro-
element shows good correlation with experimental data. The results for Specimens J2 and J3 are 
not shown, but similar correlations between the simulated and measured response were observed. 
In general, the contribution of joint shear distortion to total story drift ratio as well as the 
sequence of yielding for beam and column longitudinal reinforcement and joint transverse 
reinforcement were accurately predicted by the model. Thus, the 3D beam-column joint macro-
element is considered to provide reliable and accurate simulation of the response for 
unidirectional and bidirectional lateral loads.  
 

 
Fig. 15 – Story shear-joint distortion relationship for Specimen J1 

 
5.4 Story Shear Response Trajectories 
 Figures 16 and 17 present calculated and measured story shear trajectories for Specimens 
J2 and J3 for the cases of 2% and 4% story drift, respectively. The data show that the 
conventional rigid joint model is inadequate in all cases. The ACI-352 provision for joint shear 
strength underestimates the test results in particular under 45 degree directional loading. It means 
that bidirectional loading is necessarily the reason for the increase of joint shear damage. Thus, 
existing joint shear strength models are inappropriate for estimating joint shear strength. In 
contrast, the beam-column joint macro-element model provides accurate simulation of the 
measured story shear trajectories, i.e., the joint shear strength in the 45 degree direction as well as 
the 0 and 90 degree directions agree with test, and the story shear resistance under restrained 
story drift always decreases during loading or unloading in the transverse direction. In general, 
the calculated story shear trajectory is fairly consistent with the measured response for all 
quadrants of the load trajectory; however, there is some loss of capacity in the second cycle of 
loading to a given drift level. Thus, the numerical analyses simulate well the strength loss under 
bidirectional lateral loading.   
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Fig. 16 – Story shear orbit of Specimen J2 

 

 
Fig. 17 – Story shear orbit of Specimen J3 

 
 

 
6.  CONCLUSIONS 

 
The research presented here shows that the proposed 3D joint macro-element can satisfactorily 
simulate the observed strength, stiffness and hysteretic behavior of 3D beam-column joints, 
including the strength degradation resulting from cyclic bidirectional lateral loading. The 3D joint 
macro-element consists of six independent rigid plates and multiple uniaxial springs. The springs 
represent the concrete, reinforcing steel and bond-slip behavior between concrete and reinforcing 
bars. The 3D joint macro-element was used to simulate the response of one beam-column joint 
sub-assemblages and two slab-beam-column joint sub-assemblages tested by researchers at UT 
Austin. The specimens were subjected to quasi-static cyclic bidirectional and unidirectional 
lateral loading. Comparison of the simulated and measured response histories shows that the 
simulated histories are in good agreement with the observed cyclic behavior and that the 
proposed model provides significantly better simulation of response than the rigid joint model 
typically used. The data show that for unidirectional and bidirectional lateral loading, the macro-

-80 -40 400 80 -80 -40 400 80 -80 -40 400 80

80

40

0

-40

-80

80

40

0

-40

-80

80

40

0

-40

-80

400

200

0

-200

-400

400

200

0

-200

-400

400

200

0

-200

-400

-400 -200 200 4000 -400 -200 200 4000 -400 -200 200 4000
Story shear in kN, E-W direction Story shear in kN, E-W direction Story shear in kN, E-W direction

Story shear in kips, E-W direction Story shear in kips, E-W direction Story shear in kips, E-W direction

St
or

y 
sh

ea
r i

n 
ki

ps
, N

-S
 d

ire
ct

io
n

St
or

y 
sh

ea
r i

n 
kN

, N
-S

 d
ire

ct
io

n

Qbu: flexural strength of beam Qjn: Joint shear strength (ACI-352)

(a) Test (b) Simulation (nonlinear joint) (c) Simulation (rigid joint)

Qjn Qjn Qjn

Qbu Qbu Qbu

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

60

40

20

0

-40

-20

-60

60

40

20

0

-40

-20

-60

60

40

20

0

-40

-20

-60

200

300

100

0

-100

-200

-300

200

300

100

0

-100

-200

-300

200

300

100

0

-100

-200

-300

-300 -200 -100 200100 4000 -300 -200 -100 200100 4000 -300 -200 -100 200100 4000
Story shear in kN, E-W direction Story shear in kN, E-W direction Story shear in kN, E-W direction

Story shear in kips, E-W direction Story shear in kips, E-W direction Story shear in kips, E-W direction

St
or

y 
sh

ea
r i

n 
ki

ps
, N

-S
 d

ire
ct

io
n

St
or

y 
sh

ea
r i

n 
kN

, N
-S

 d
ire

ct
io

n

Qbu: flexural strength of beam Qjn: Joint shear strength (ACI-352)

Qjn
QjnQjn

Qbu

Qbu

Qbu

Qbu

Qbu

Qbu

(a) Test (b) Simulation (nonlinear joint) (c) Simulation (rigid joint)



 

 20 

element is capable of reproducing the pinching, stiffness degradation and strength deterioration 
that results from cyclic loading. 
 Implementation of this model in software for non-linear time-history analysis of concrete 
frames offers the potential for better estimation of the 3D seismic response of the ductile moment 
resisting reinforced concrete frames with one-way and two-way framing systems. For two-way 
systems comprising the slab, beams and columns, modeling considering the effect of the slab 
contribution to joint strength and beams is critical for the response simulation.  
 When assessment of the building frame’s earthquake performance with two-way ductile RC 
moment-resisting frames and continuous slabs is necessary, the proposed macro-element is the 
straightforward and practical option for performance assessment, including assessment of the 
impact of bidirectional cyclic loading on maximum response and collapse vulnerability. 
 Continuing research on 3D beam-column joint test and model validation are necessary to 
reveal the limitation of the model not shown in the paper, which include failure modes, the 
geometry of the joint, column axial stiffness. That is necessary to be done in the future study.   
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